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a b s t r a c t

In recent years the industrial applications of porous materials has shown a growing relevance. Most of the
technological thermal processes in porous media involve time-dependent thermal conditions. Therefore,
the temperature at each point of the material also changes in time. In order to correctly carry out the
technological process, it becomes necessary to know the temperature distribution inside the material.
This is a problem of heat conduction in a fluid saturated porous media subject to a lack of local thermal
equilibrium (LTNE).

The purpose of this paper is to elucidate the several causes of LTNE, even in steady or quasi steady heat
transfer processes in saturated porous media, and to evaluate the influence of structural characteristic of
porous media and the presence of surfactant in the saturating liquid phase.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many thermal processes require knowledge of thermal energy
transport through porous media [1] such as biological systems [2],
food processing [3,4], microheat exchanges [5], building insulation
[6], nuclear reactor design and waste processing [7–9] and porous
insert for thermal enhancement [10].

Most of heating processes in engineering are carried out putting
the material in contact with a heat source. The heating of porous
media by applying a heat source on the boundary is characterised
by three different regimens:

(i) Initial regimen or heating process beginning. When the ther-
mal perturbation at the boundary of porous medium is prop-
agated-in.

(ii) Intermediate regimen. In this stage, the heat transfer rate
decreases gradually becoming zero at the limit. The temper-
ature variation rate strongly depends on the initial state.
During this stage, the influence of initial irregularities disap-
pears slowly and the temperature variation rate begins to
become constant.
ll rights reserved.
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(iii) Final stage. After elapsing a large time (theoretically infinite),
the steady state is attained, whose singular characteristic is
the constant temperature distribution, provided that the
temperature at the cold boundary is maintained constant
by refrigeration.

Based on the traditional formulation of heat transfer in porous
media, Vadasz [11] demonstrates that local thermal equilibrium
applies generally for any boundary conditions that are a combina-
tion of constant temperature and insulation. But, in engineering
practice, most of the heating processes are unsteady. Therefore, it
can be expected that local thermal non-equilibrium (LTNE) exists
because the pattern of heat flow within the solid phase of porous
medium does not match within the fluid phase.

In relation to the lack of local thermal equilibrium there are
many proposed criteria. Nield [12] shows that the ‘‘steady state”
conduction for uniform thermal conductivities leads to LTE if the
temperature, or its normal derivative on the boundary, is identical
in both phases. Carbonell and Whittaker [13] performed a pioneer-
ing work on local thermal equilibrium. They presented a criterion
for the validity of the assumption of local thermal equilibrium by
using a magnitude order analysis in a representative elementary
volume (REV) enclosing both the fluid and the solid phase.

Although many are the evidences of this LTNE behaviour
[14–20], the assumption of LTE is very common, particularly in
the study of reactions flows in porous media. However authors
think that even if the criteria of validity proposed by Carbonell
and Whittaker should be accomplished, there always are different
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Nomenclature

A transversal section (m2)
C specific heat (J kg�1 K�1)
�dp mean particle diameter (m)
h porous media total height (m)
hc heat transfer coefficient (W m�2 K�1)
Kf thermal conductivity of fluid phase (W m�1 K�1)
Ks thermal conductivity of solid phase (W m�1 K�1)
L mean length (m)
_q heat flux (W m�2)
Se specific surface (m�1)
T temperature (K)
t time (s)
_V volumetric flux (m3 s�1)
Wac,i accumulated heat in the porous medium (W)
Wrf,i heat transfer per unit time to the refrigerating fluid (W)
Wtt,i total heat transfer per unit time of the porous media (W)
z position/axial coordinate (m)

Greek symbols
a thermal diffusivity (m2 s�1)

k thermal conductivity (W m�1 K�1)
m kinematic viscosity (m2 s�1)
H dimensionless temperature: H ¼ hTi�T0

T1�T0
where hi

average
q density (kg m�3)
r surface tension (mN m�1)
h temperature (�C)
e porosity
s relaxation time (s)

Subscripts
ac accumulated
ef effective
l liquid phase
rf refrigerating fluid
tt Total
f Function
s solid
p plate
c contact
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causes contributing to LTNE such as thermal boundary resistance
(also called Kapitza resistance), solid surface wettability and lag-
ging response.
1.1. Thermal boundary resistance (Kapitza resistance)

Kapitza found that when heat flowed between copper and
superfluid helium a temperature step was developed at the inter-
face and it was proportional to the heat flux [20,21].

The existence of the same phenomenon is known at every inter-
face, even in a twin boundary of the same material, but it can be
much stronger for an interface between two different materials
[22–24].

Lloyd et al. [17] show that the contact resistance appears when
the heat flux is applied to a saturated porous medium by a hot
plate contacting it. In this case, the temperature distribution model
assumes that sensible energy transferred from the interface plate–
porous medium is deposited within a macroscopically thin bound-
ary layer on the plate side.
1.2. Solid surface wettability

Near a solid–liquid boundary, spatially varying properties are
prevalent and they have been correlated for the surface wettability
[25].

Inside of porous media, if a non-condensing fluid (i.e. air) is oc-
cluded in the liquid phase, the dominating phase fills small size
pores. The bulk of the large pores is occupied by less-wetting and
non-wetting phase.

When two liquids are confined in micro-channels the relation-
ship between wettability, the intensity of solid–liquid interaction
and spatial variation of liquid properties is still valid. At the level
of very small thickness of liquid–solid interface layer is quite hard
to believe that thermodynamic equilibrium is reached because of
the different basic heat conduction mechanism in either of the
phases. Rah and Chan Eu [26] have developed a theoretical molec-
ular equation for the thermal conductivity of liquids consisting in
two parts: the first one given in terms of intermolecular forces
structure and in terms of Chapman-Enskog thermal conductivity
and the other one, in terms of the solids and the electron flux in
the dominant heat conduction mechanism.
Efforts have been made to vary surface wettability in order to
generate tailored transport properties within microscale solid–li-
quid systems. By using molecular dynamics Banat and Chiaruttini
[27] demonstrated that tailored thermal resistance across a
liquid–solid boundary can be obtained by tuning the strength of
the solid–liquid interactions. The surface wettability is tuned by
adjusting the solid–liquid parameter eSL in Lennard-Jones potential
equations commonly used in molecular dynamics simulation of
solid–liquid boundaries [28].

The addition of small amounts of soluble polymers makes the
heat flux significantly higher for the same superheat at the heating
surface [29].

All these solid–liquid interfaces makes that continuum based
boundary conditions may not be applicable to microscale analysis.
Then an understanding of the actual behaviour near surfaces and
interfaces is required.
1.3. The lagging response

This behaviour in the transient process is caused by the finite
time required for occurring structural interactions. When the heat-
ing of porous media is promoted by a hot plate, due to the presence
of pores between the heater and the material volume, the heat flow
produced by the hot plate at a general time t arrives at the material
volume at a delayed time t + sq. The internal pore within the mate-
rial volume causes an additional delay in heat transport, prolong-
ing the establishment of the temperature gradient at t + sT.

This type of delayed response depends on the detailed configu-
ration of the solid particles and the interstitial gas within the mate-
rial volume. The two phase lags sT and sq, like the thermal
diffusivity and thermal conductivity, are intrinsic thermal proper-
ties of the bulk material. In porous media, they become ‘‘structural
properties”, which also depend on the detailed configuration of the
structures.

In the classical theory of diffusion, the heat flux vector~q and the
temperature gradient rT across a material volume are assumed to
occur at the same instant of time. In the wave theory of heat
conduction, on the other hand, the heat flux vector and the
temperature gradient across a material volume are assumed that
will occur at different instants of time. Assuming an instantaneous
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heat flow, the time delay, called the ‘‘relaxation time” is defined by
the wave model formulated by Cattaneo and Vernotte [30–32].

In applications that involve short time thermal perturbation of
porous media [33], subjected to a rapidly changing heat source, dif-
ferent temperature may exist between solid and fluid. Hence the
two equations of heat transfer [18,34] are not coupled and can
no longer be reduced to a single equation for (Ts � Tf).

Tzon et al. [35] developed a procedure for the determination of
sT in the case of a porous medium heated at the boundary with a
heat flux ~q by knowing the thermal conductivity k. They use the
linear version of the energy equation and the constitutive equation
based on the first order expansion of sT and sq. Then, they obtained
the phase lag of the temperature gradient sT from the initial slope
of the T vs. t curve recorded at the heated end.
2. Experimental studies

In order to show the possible causes of local thermal non-equi-
librium in the engineering practice of heating saturated porous
media, authors have carried out some heating experiences under
thermal conditions that can be bound in industrial common
applications.
2.1. Porous media tested

The porous media that have been studied are the following:

� Bronze powder saturated by water and by a solution of surfac-
tant, hereinafter referred to as Bronze + W and Bronze + DS,
respectively. Geometrical porosity: 0.36.

� Sand saturated by water and by a solution of surfactant, herein-
after referred to as Sand + W and Sand + DS, respectively. Geo-
metrical porosity: 0.38.

� Cotton fibre saturated by water and by a solution of surfactant,
hereinafter referred to as Cotton + W and Cotton + DS, respec-
tively. Geometrical porosity: 0.83.

These three porous media have very different chemical natures
of solid phase (metallic, mineral and organic), different thermo-
physical properties of both phases, different transport properties
(viscosity and surface energy) of liquid phase and different geo-
metrical characteristics of solid components. They have been se-
lected in order to verify the influence of the nature of the solid
phase, transport properties of the liquid phase and their structural
characteristic (porosity, specific surface area, etc.) on the thermal
response of the porous medium submitted to an unsteady heating
process.
Table 1
Geometrical characteristics and thermophysical properties of the solid phase.

Solid
phase

Mean diameter
dp � 10�4 (m)

Mean length
L � 10�3 (m)

Density q
(kg m�3)

Specific
(m�1)

Bronze 2.355 — 8614.05 25477.7
Sand 29.60 — 2613.95 2027.0
Cotton 0.145 11.35 1176.25 274819

Table 2
Thermophysical properties of the saturating liquid phase.

Liquid phase Density q
(kg m�3) at 20 �C

Cinematic viscosity
m (m2 s�1) at 20 �C

Spec
C (J

Distilled water 998.2 1.01 � 10�6 4182
Diluted solution 998.2 0.96 � 10�6 4182
Geometrical characteristics (shape, size and specific surface
area) and thermophysical properties of the solid matrix elements
of the previous mentioned porous media are shown in Table 1.

With regard to the saturating liquid phase, Table 2 shows a
summary of values of the most important properties. The solution
of surfactant is obtained by adding distilled water 0.8 g/l of Nonil-
fenol 30-0E, a non-ionic active agent.

The porous media are submitted to an unsteady heating process
by applying a heat flux, on one boundary through a hot plate, and
maintaining a constant temperature at the other boundary by
refrigeration. The thermal response of porous media under these
thermal boundary conditions is obtained by measuring the tem-
perature at several interior points (minute by minute) and the
incremental temperature of refrigerating water flow.

Fig. 1 shows the experimental equipment which is constituted
by a cell formed by a cylinder of stainless steel in which the porous
medium is compacted. The base of the cell is a stainless steel plate
of 0.5 m gauge, which is part of the refrigerating chamber where
water circulates. The cell is closed with an aluminium plate press-
ing the porous medium. This plate has incorporated an electric
resistance heater which is connected to an adjustable current
transformer. The temperature is measured by using thermocouples
placed within the porous medium at different distance from the
heating plate. The electrical signal is automatically registered by
a data acquisition system.

The heat flow transferred to the water at the refrigerating
chamber is calculated by measuring the water flow rate and its
increment of temperature through thermocouples.
3. Experimental results

The experimental results concerning to the field of tempera-
tures inside the porous medium are represented by the surface
T = T(z, t) of in Fig. 2(a)–(h). A function which fits the surface of
state with a r2 > 0.9 is as follows:

ln T ¼ aþ bt0:5 þ cz
ln z

ð1Þ

which reveals the dependence of the temperature T with
ffiffi
t
p

and z.
Fig. 3 shows, as an example, the heat power transferred vs. time, to
the refrigerating water flow by the Bronze + W and Bronze + DS
porous media.

Other representations can be brought out from the previous fig-
ures, such as that show the temperature variation vs. time, by tak-
ing the position as a parameter. For instance, Fig. 4, for Bronze + W
and Bronze + DS, respectively. In all the cases, the fitting equations
Ti = Ti(t), Tj = Tj(z), i, j = 1,2, . . . ,5 have been obtained by using the
least square method and maximum value of r2, usually of 0.9999
order.
surface Se Specific heat C (J kg�1 K�1)
at 20 �C

Thermal conductivity k
(J s�1 m�1 K�1) at 20 �C

376.00 71.00
527.90 31.39 � 10�2

.7 1329.98 5.89 � 10�2

ific heat
kg�1 K�1) at 20 �C

Thermal conductivity
k (J s�1 m�1 K�1) at 20 �C

Surface tension
r (mN m�1)

.8 0.598 75.83–0.1477 T (�C)

.8 0.598 46.42–0.1312 T (�C)



Fig. 1. Experimental equipment scheme.

Fig. 2. Surface of state T = T(z, t) of the different porous media.
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Fig. 3. Curves Wrf vs. t to the porous media Bronze + W (continuous line) and
Bronze + DS (dotted line).

Fig. 4. Temperature distribution vs. time at the corresponding thermocouples
locations to Bronze + W (continuous line) and Bronze + DS (dotted line), respec-
tively. [ ] Thermocouples.

Fig. 5. (a) (1) Cotton 83 + W and (2) Cotton 83 + DS, (b) (1) Bronze + W and (2)
Bronze + DS.
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From the fitting equations Ti = Ti(t) and Tj = Tj(z), with corre-
sponding derivative @Ti/@t and oTj/@z, have been calculated. Now,
values of T vs. z, t and its corresponding derivatives are available.
The value of other characteristic magnitudes to unsteady heating
process of porous media tested can be now determined through
the most reliable methods and with the expected accuracy to its
application. Among them, it has been carried out the following ones:

1. Temporal temperature variation in five different locations inside
the porous media. T5 at interface hot plate–porous medium
z = 0; T4 at 13.75 mm from the hot plate; T3, T2 and T1 at
35.18, 53.78 and 73.48 mm from the hot plate, respectively.
Results are plotted in Fig. 4.

2. Spatial temperature variation inside the porous media at different
times of the heating process. Results are plotted in Fig. 5a and b.

3. The accumulated heat per second, Wac, at the porous medium vs.
time: Wac;i ¼ hqCpii;A

R h @T
@t

� �
dz. Results are plotted in Fig. 6.

From all these results it can be calculated the thermal conduc-
tivity and diffusivity of porous media under conditions near to the
steady heat transfer and the time parameter of lagging response of
unsteady heating process. Also, it can be evaluated the influence of
dilute solution of surfactant as saturating liquid of porous media
upon their thermal properties.
3.1. Thermal conductivity and diffusivity

In these experiences, the steady state is never reached. At the end
of heating process, the temperature variation rate of the porous
media is about 1.18 � 10�4 �C/s for Bronze + W, 2.92 � 10�4 �C/s
for Sand + W and 5.78 � 10�4 �C/s for Cotton 83 + W. However,
these temperature rate values are small enough to allow the thermal
conductivity applying Fourier law or the Price’s method. W.L. Price
puts forward a method to calculate the thermal conductivity and
thermal diffusivity from measurement at non-stationary heat con-
duction. The method lays on the contribution of a heat flux _q to
the porous medium through a heating plate. At the same time, the
porous medium is maintained at constant refrigerating temperature
Trf through a parallel surfaces separated from the heating plate. The
difference in temperature h vs. time t between layers, which are sep-
arated a distance z of the porous medium from the initial moment of
application of heat flux, is obtained by,

h ¼
_qz

Kef
1� 8

p2

X1
n¼0

ð2nþ 1Þ�2
; exp �ð2nþ 1Þp2aef t

4z2

� �" #
ð2Þ

After some transformations,

h ¼
_qz

Kef
� 4z2

p2aef

� �
S ð3Þ

where S denotes dh/dt.
Eq. (2) is physically represented at the co-ordinate (h,S) by a

straight line, with the ordinate at the origin _qz=Kef and the slope
�(4z2/p2aef). Then, Kef and aef can be calculated. On the other hand,
if the Fourier law can be applied,

Kef ¼
_qz
rT

and aef ¼
Kef

ðqCpÞ

where hqCpi = e(qCp)f + (1 � e)(qCp)s.



Fig. 6. Accumulated heat by second, Wac, in the porous medium.
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Fig. 7(a)–(d) shows the results (h,S) obtained applying the
Price’s method to Sand + W, Sand + DS, Bronze + W and Bron-
ze + DS porous medium.
Fig. 7. a (top-left), b (top-right), c (down-left), d (down-right). L
Table 3 resumes the corresponding calculated values of Kef and
aef. Table 4 summarises the results obtained applying the Fourier’s
law at the end of the heating process. The corresponding values of
east squares fitting lines of the experimental values (H,S).



Table 3
Values of Kef and aef.

t (seg) _qðW m�2Þ z (m) hs=0 dh/ds Kef (W m�1 K�1) aef (m2 s�1)

Sand + W 10,800 2823.17 0.0952 73.295 �2220.95 3.667 1.65385 � 10�6

Sand + DS 10,800 1742.42 0.0952 70.855 �2051.56 2.341 1.7904 � 10�6

Bronze + W 14,400 4894.23 0.0952 53.588 �2062.57 8.695 1.7808 � 10�6

Bronze + DS 14,400 4812.48 0.0952 61.122 �2574.83 7.496 1.4262 � 10�6

Table 4
Fourier’s law at the end of the heating process.

t (seg) 106 _V ðm3 s�1Þ DTrf (�C) _q ðW m�2Þ rT (�C m�1) Kef (W m�1 K�1)

Cotton + W 10,800 3.735 0.5168 1026.09 �405.59 2.531
Cotton + DS 10,800 3.672 0.5667 1107.39 �517.20 2.142
Sand + W 10,800 3.167 1.676 2823.17 �777.13 3.633
Sand + DS 10,800 3.276 1.2346 1742.42 �792.49 2.198
Bronze + W 14,400 4.116 2.2356 4894.23 �615.77 7.948
Bronze + DS 14,400 4.187 2.1610 4812.48 �689.06 6.984
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aef are obtained as Kef/hqCpi. Table 5 summarises the values of hqCpi
and aef.
4. Approaching models of temperature field inside the porous
media

The heating process in these experiences is quite complex. In
fact, authors would like to reproduce the most frequent conditions
that can be found in the engineering practice: heat flux source
intensity rising in time, constant temperature at the cold end, with
or without heat transfer in it.

The experiences show that the heat transfer at the hot and cold
boundaries, is non-Fourier, as Fig. 8 shows the temperature field in
Sand + W porous medium after 3600 s from the beginning of the
process. It seems obvious that at the two boundary locations
x = 0 and x = 0.0952, the heat flow is defined by a heat transfer
coefficient, hc, function of the interface contact. Fig. 8 also shows
the temperature field in Bronze + W porous medium after
14,400 s from the beginning of the process.

An approach model that could be used to calculate hc = hc(0, t) in
order to compare both modelling and experimental results and
agents in the saturating liquid, is the following:

Kef
@T
@z
þ hcðTp � TÞ ¼ 0

where in z ¼ 0! T ¼ T0 ¼ Tp to t ¼ 0 and 8z
_q ¼ hcðTp � TÞ ð4Þ

where Tp is the hot plate temperature when the heat flux to porous
medium is _q. If it is taken ¼ Tp � T þ Kef

hc

@T
@z, then the Fourier’s equa-

tion is written as:

@f
@t
¼ a

@2y
@z2 ð5Þ

Now, the boundary conditions are f = Tp when t = 0; f = 0 in z = 0. The
solution of Eq. (5) is,
Table 5
Values of hqCpi and aef.

e qf (kg m�3) qs (kg m�3) cpf (J kg�1 K�1)

Cotton + W + DS 0.83 948.2 1176.25 4182.8
Sand + W + DS 0.38 948.2 2613.95 4182.8
Bronze + W + DS 0.36 948.2 8614.05 4182.8
f ðz; tÞ ¼ 2Tpffiffiffiffi
p
p

Z z
z
ffiffiffi
at
p

0
e�l2

dl ð6Þ

In order to evaluate T,

Kef
@T
@z
þ hcðTp � TÞ ¼ �f ðz; tÞ � hc ð7Þ

After integration, the solution obtained is as follows,

T
Tp
¼ erf

z
2
ffiffiffiffiffi
at
p

� �
þ exp

hzþ h2
0at

Kef

( )
erfc

z
2
ffiffiffiffiffi
at
p þ hc

Kef

ffiffiffiffiffi
at
p� �

ð8Þ

From this equation, hc can be calculated by knowing a and Kef. The
values of T can be taken from the corresponding experience for all
z > 0, t > 0. Once hc is calculated, the values of T can be known from
Eq. (4) for all t > 0. Then, by taking this temporal distribution of the
temperature as a boundary condition, T(z, t) can be calculated by
applying a Fourier’s model.

In order to obtain the order of magnitude of hc, Eq. (8) can be
simplified considering that,

erfc
z

2
ffiffiffiffiffi
ar
p þ hc

Kef

ffiffiffiffiffi
at
p� �

� 0ð1Þ and erf
z

2
ffiffiffiffiffi
at
p

� �
� 0ð1Þ

Then,

T
Tp
� 0 exp

hzþ h2
c at

Kef

( )" #

For instance, in z = 0.01375 m from the hot plate at t = 600 s the
temperatures measured are Tp = 36.715 �C and T(z) = 24.973 �C,
obtaining hc ffi 34 W/m2 K, approximately. In order to compare
experimental and theoretical results, the classical model of semi-
infinite body heating can be used, initially with an uniform temper-
ature Tt when the surface temperature variation is specified as a
prescribed function f(t) for t P 0 [36].

The formulation of the problem in terms of h(z, t) = T(z, t) � Ti

assuming constant thermophysical properties, is given by,
cps (J kg�1 K�1) hqCpi 106aef (m2 s�1) W 106aef (m2 s�1) DS

1329.91 3731421.0 0.6782 0.57
527.9 2442143.6 1.4876 0.9
376 3575982.5 2.2226 1.953



Fig. 8. Sand + DS; t = 3600 s; T2 ffi 1 (up), Bronze + W; t = 14,400 s (down).

Fig. 9. Uptake isotherm absorption of the non-ionic surfactant on quartz sand from
aqueous solution.

Fig. 10. Cotton 83 + DS (continuous line ) and Cotton 83 + W (dash line).
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@2h
@z2 ¼

1
a
@h
@t

; hðz;0Þ ¼ 0; hð0; tÞ ¼ f ðtÞ � Ti; lim
z!1

hðz; tÞ ¼ 0

The solution is,

Tðz; tÞ ¼ Ti � Tierfc
z

2
ffiffiffiffiffi
at
p

� �
þ z

2
ffiffiffiffiffiffiffi
pa
p

Z t

0

ðt � t0Þ
ðt0Þ

3
2

exp � z2

4at0

� �
dt0

That can be rewritten as,

Tðz; tÞ ¼ Tierfc
z

2
ffiffiffiffiffi
at
p

� �
þ
Xn

i¼1

½f ðsiÞ � f ðsi�1Þ�erfc
z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � siÞ

p
( )

ð9Þ

For instance, at t = 2400 s the temperature measured at
z = 0.01375 m is 48.426 �C, and the one calculated by using time
intervals Ds = si � si � 1 = 60 s is 49.02 �C.

On the other hand, from the known values of aef and Kef ob-
tained experimentally it can be calculated the values of hc for all
t in z = 0, applying Eq. (8). Then, it can also be calculated the values
of T(z, t). For instance, for the Sand + W porous medium at z = 0 and
z = 0.01375 m the temperature values measured after 5400 s from
the beginning of the heating process are:

Tp;exp¼87:34 	C; T¼70:375 	C
T
Tp

� �
exp

ðz¼0; t¼5400 sÞ¼1!hffi6W=m2 K;TðEq: ð8ÞÞ¼75:15 	C

The temperature gradient value at the same (z, t) is �688.47 �C/m.
Applying Fourier’s law, it gives Tp,F ffi 79.53 �C
 Tp,exp. This compar-
ative shows the influence of thermal contact conductance at the
interface heating plate–porous medium.

5. Critical analysis of experimental results

Basically, experimental results show that the heating process
cannot be modelled assuming local thermal equilibrium. Despite
of the slow temperature rising at the heating plate, the contact
conductance at the two interface plate–porous medium, at hot
and cold ends, where the heat flow is non-Fourier, are very impor-
tant perturbation causes. Therefore, it can be drawn out several
conclusions.

5.1. Thermal conductivity and diffusivity

The values of thermal conductivity and thermal diffusivity cal-
culated by using Price’s method (applied to overall experimental
results) and Fourier’s law (applied only to the results at the last
time of the heating process) are nearly the same. The maximum
difference between the two values corresponding to the Bron-
ce + W, attains about 8%. However, this difference is more impor-
tant when confronts the values corresponding to the same
porous media saturated by water and saturated by dilute solution
of surfactant. The maximum occurs in the porous media with solid
matrix of sand, attaining about 40%. The presence of surfactant
diminishes the bulk thermal conductivity coefficient as well as
the bulk thermal diffusivity in all the porous media tested. This ef-
fect can be due to adsorption of surfactant on the solid surface.
Fig. 9 shows the uptake isotherm absorption of the non-ionic sur-
factant on quartz sand [37] from aqueous solution, where
C ¼ ðc0�ceqÞV

mSsp
is the uptake.

The wetting angle for quartz sand is zero, indicating the forma-
tion of a strong wetting film of aqueous solution of surfactant on
the sand surface, with a specific surface of Ssp ffi 0.03 m2/g. This film
does not break when an air bubble is brought into it. The main ef-
fect of this film is to increase the solid surface in contact to the li-
quid solution by wetting, so that the heat transfer from liquid to
solid phase is enhanced. Fig. 10 shows how increases the heat



Fig. 11. Bronze + DS.
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accumulated in solid phase of porous media and their heating rate
when the saturating liquid phase is the surfactant solution [38].

5.2. Heat transfer at the boundary hot plate–porous medium

The coupling of the bounding surface thermal conductivity and
the effective thermal conductivity of the porous medium on and
near to the bounding solid surface is a very complex problem.
The application at the interface of the bulk value of effective ther-
mal conductivity can lead to significant errors in the predicted heat
flow rate. The factors contributing to the difference between the
two thermal conductivities are the non-uniformity porosity, the
contact area between the elements of matrix and the boundary
surface, and the location of the interface.

Assuming that the local effective thermal conductivity is uni-
form over a distance d/2 from the surface, Ofuchi and Kunii [39]
have proposed an empirical relation for the local effective thermal
conductivity. However, the expression is valid only for a loose
packing of monosize spherical particles.

From the experimental results it seems that the ratio of surface
boundary fraction in contact with the liquid phase and with the so-
lid phase of porous medium is a function of the bulk porosity, form
and size of the solid matrix elements. Besides, the wetting degree
of the boundary surface must have some influence on thermal
conductivity.

Applying Fourier’s law to a layer of porous medium separated a
distance greater enough than d/2 from the heating surface, know-
ing the heat flux and calculating the temperature gradient, the bulk
thermal conductivity coefficient values have been obtained. The
values are shown in Table 6 where Kec is the bulk thermal conduc-
tivity coefficient at z = d/2, and Keb is the bulk thermal conductivity
coefficient of porous medium assuming that Fourier’s law can be
applied. Kec/Keb values show the influence of plate–porous medium
contact. This influence is as greater than lesser is the thermal con-
ductivity of solid matrix in porous medium.

5.3. The lagging response

The unsteady heating process is characterised by a temperature
variation rate in all points inside the porous medium. This temper-
ature variation and heat flux ~q are taken into account writing the
energy equation in the form [33],

~qð~rit þ sqÞ ¼ �KrTð~rit þ srÞ

No general solution has yet been found for this type of equation
when delays are considered. For the advancement of the dual
phase-lag model, the thermal conductivity and the thermal diffusiv-
ity must be determined experimentally. Although the boundary
condition of constant heat flux experiences is not exactly achieved,
we can use this method for determining the lag time of heat flux. By
plotting ~q vs. t, the slop of the q–t curve at t = 0 is clearly,

@~q
@t

� �				
t¼0
¼ � KrT

sq

� �

From the q vs. T values calculated for the Bronze + DS porous med-
ium, Fig. 11, it is obtained,
Table 6
Bulk thermal conductivity coefficient values.

Cotton Sand Bronze

+W +DS +W +DS +W +DS

0.6388 0.6234 1.3758 0.799 5.469 4.5877 W m�1 K�1

0.2524 0.29 0.3787 0.3635 0.6881 0.6569 Kec/Keb
@~q
@t

� �				
t¼0
¼ 12:936 W=m2 s; jKrTj ¼ 4933:8 W=m2

and hence, sq = 381.1 s.
For the same porous medium, the lag time of temperature gra-

dient is calculated by using the equation:

@C
@t

				
x¼0;t¼0

¼ � qL
KsT

From the curve T vs. t the calculated value of @C
@t at x = 0, t = 0 is

0.0138965 �C/s, and sT = 4253.9 s. For the Bronze + W porous med-
ium, the phase lag of temperature gradient is calculated from the
value @T

@t ¼ 0:0113 	C=s at x = 0, t = 0, and hence sT = 4741.9 s.
It can be concluded that when the porous media are submitted

to time thermal perturbation, even for long time temperature
variation processes, heat conductivity behaviour is definitely
non-Fourier. In these cases, the governing energy equation is for-
mulated based on the two-equation model. This formulation
essentially leads to emergence of two thermal lag times which take
into account the thermal interaction between the fluid and the
solid phases of porous media as well as the delayed time for both
phases to approach thermal equilibrium.

5.4. Isotherm front propagation

If a isotherm front propagation is promoted by a plane wave

T = h(z � mt), then it necessarily satisfies �qcv dh
dz
¼ d

dz
k

dh
dz

� �
.

Introducing this velocity in the diffusion equation
@T
@t
¼ a

@2T
@z2 , it

is obtained: � m
a
¼ d

dz
ln

dh
dz

� �
.

Integrating: � mz
a
þ C1 ¼ ln

dh
dz

� �
.

At z ¼ 0) C1 ¼ ln
dh
dz

� �
z¼0

, and hence: m ¼ a
z

ln
ðdh=dzÞz¼0

ðdh=dzÞ

� �
.

Fig. 13 shows the front position vs. time for different isotherm
temperature in the porous media Bronze + W and Bronze + DS.
The isotherm front propagation velocity is given by the curve slope
in each point, and it is diminishing as the distance to the hot plate
increases.
6. Conclusions

From the experimental results obtained it can be drawn the fol-
lowing conclusions:



Fig. 12. (a) Tp(t), (b) Wrf(t), Wac(t).

Fig. 13. (a) 25 �C, (b) 30 �C, (c) 43 �C, (d) 50 �C for DS (dash line) and W (continuous
line).
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� The thermal response to unsteady heating process for all the
porous media studied is characterised by the state surface tem-
perature field T(z, t) as it is shown in Fig. 2, and also by Tp(t),
Wac(t), and Wrf(t) in accordance with Fig. 12.

� The temperature field T(z, t) cannot be fitted with an only equa-
tion because it is a three scale problem, even near to the equilib-
rium state. The effects of contact conductance at both
boundaries, hot plate–porous medium and porous medium–
refrigeration wall are evident and heat transfer is non-Fourier.

� Experimental results show that whenever the accumulated heat
into the porous medium occurs, Wac > 0, the lack of LTE is evi-
dent. However, provided that the increment of temperature rate
is lower than 10�4 �C/s, the determination of the thermal con-
ductivity coefficient can be performed applying Price’s method
and Fourier’s law. The difference between the values obtained
by both methods is always lower than 8%.

� The thermal conductivity coefficient and the thermal diffusivity
depend not only on porous media porosity but also on thermal
conductivity of solid matrix and on its structural morphology.
Within the knowledge of the authors, no evidence was found
in the open technical literature of research work addressing
physical models capable to predict the value of these coefficients
with enough accuracy.

When the porosity is very great, for instance, the porous med-
ium based on Cotton, the value of the diffusivity is the same order
as the saturating liquid. The major causes of lack of LTE are the un-
steady characteristic of the heating process and the non-Fourier
heat transfer at the boundaries. The first cause is seems evident
by analyzing the energy equilibrium in a VER with porosity e. Let
T0 be the initial equilibrium temperature into the VER, also in equi-
librium with its neighbouring. Then, for all temperature variation
of one of both phases, the energy equilibrium requires:

eðqCpÞf
@Tf

@t
¼ ð1� eÞðqCpÞ

@Ts

@t

Therefore,
@Tf

@Ts
¼ ð1� eÞðqCpÞs

eðqCpÞf
:

Calculating the value of this ratio for the studied porous media
we obtain 1.397 (Bronze + W), 0.539 (Sand + W ) and 0.0767 (Cot-
ton + W), while at equilibrium state the value must be one. The va-
lue of this ratio suggests how much the system is out of
equilibrium state and the direction of heat flux at the interface.

The isotherm front propagation velocity depends on the gradi-
ent temperature at the interface hot plate–porous medium, and
also on the diffusivity value.

The isotherm front propagation velocity is given by the curve
slope in each point, and it is diminishing as the distance to the
hot plate increases. The addition of a surfactant to the water has
a strong influence on the thermal response of porous media. The
major effects are:

(i) Lowering the bulk thermal conductivity and diffusivity.
(ii) Lowering the time lag of heat flux and temperature gradient.

(iii) Lowering the contact resistance influence by increased inter-
face wetting.

(iv) Increasing the heat transfer rate into the porous medium
and the value of the accumulated heat per time (Fig. 10).
This effect is noteworthy in the Cotton + DS porous medium
which is due to great affinity between surfactant and cotton,
promoting the swelling of the fibres and increasing its active
specific surface.
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